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Abstract—The impedance expansion method (IEM) is a circuit
modeling technique based on the method of moments. The IEM
has been extended mainly for application to wireless power
transfer systems. For example, the IEM has been extended to con-
sider the presence of perfectly conducting and dielectric/magnetic
scatterers. This paper introduces the basic concept, theoretical
extension, and recent application of the IEM.

Index Terms—Equivalent circuits, method of moments, wireless
power transmission.

I. INTRODUCTION

Wireless power transfer (WPT) systems generally consist of
transmitting (Tx) and receiving (Rx) circuits and a wireless
coupler. Since the Tx and Rx circuits are nonlinear, time-
domain circuit analysis is necessary for their design. Although
it is possible to model the wireless coupler using the finite-
difference time-domain method to perform an integrated anal-
ysis of the entire system, it requires a significant computational
cost. However, if the wireless coupler can be modeled as
an electric circuit, the integrated analysis and design can
be conducted efficiently [1], [2]. For this purpose, a circuit
modeling technique called the impedance expansion method
(IEM) has been devised and extended [3]–[6]. This paper
introduces the basic concept and theoretical extension of
the IEM. Additionally, the recent application of the IEM is
discussed as an extension of [6].

II. BASIC CONCEPT

The IEM is based on the method of moments (MoM), which
is one of numerical electromagnetic field analysis methods [7].
In the MoM, the currents on conductors are expanded into
several basis functions, as shown in Fig. 1(a). Then, the matrix
equation Z̄I = V is yielded by means of the weighted residual
method, where Z̄ is the impedance matrix, I is the current
coefficient vector, and V is the voltage coefficient vector. Since
the matrix equation has the same form as the circuit equations
in the mesh analysis, the equivalent expression in Fig. 1(b)
holds for the discretized voltages and currents.
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Fig. 1. (a) Expanded current and (b) equivalent network.
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Fig. 2. Impedance matrix expanded into the Laurent series.

In the IEM, the impedance matrix Z̄ is expanded into the
Laurent series with respect to the complex angular frequency
𝑠 = 𝑗𝜔 as shown in Fig. 2, where the impedance components
proportional to 𝑠−1 and 𝑠 correspond to the reactances of
capacitors and inductors, respectively, and those proportional
to 𝑠2 and 𝑠4 correspond to the radiation resistances of infinites-
imal dipoles and loops, respectively [3], [4]. These radiation
resistances can be represented by dependent voltage sources,
or they can be approximated only by passive elements.

By solving a generalized eigenvalue problem Z̄(−1)I =
𝜔2Z̄(1)I, which represents the series resonance condition,
modal currents can be obtained. By expanding the currents on
the conductors with a small number of modal currents whose
resonant frequencies are close to the operating frequency, the
number of unknowns in the circuit model can be reduced [4].

III. CONSIDERATION OF NEIGHBORING SCATTERER

The IEM has been extended to consider the scattering by
perfect conductors [5] and dielectric/magnetic bodies [6]. As
shown in Fig. 3, if there is a conducting or dielectric/magnetic
scatterer in the vicinity of basis functions 𝑭𝑖 and 𝑭𝑗 , the self-
/mutual impedance between 𝑭𝑖 and 𝑭𝑗 can be decomposed as
𝑍𝑖 𝑗 = 𝑍 fs

𝑖 𝑗 + 𝑍sc
𝑖 𝑗 , where 𝑍 fs

𝑖 𝑗 is the free-space component, which
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Fig. 3. Basis functions 𝑭𝑖 and 𝑭𝑗 in the vicinity of a scatterer.

is the self-/mutual impedance in the absence of the scatterer,
and 𝑍sc

𝑖 𝑗 is the scattering component, which is induced by the
scattered field and can be obtained by the following procedure:

1) The equivalent electromagnetic currents 𝑱d and 𝑴d on
the surface of the scatterer (or the surface current 𝑱c if
the scatterer is perfectly conducting) by 𝑭𝑗 is obtained
in the form of the Laurent series with respect to 𝑠.

2) The dot product of 𝑭𝑖 and the scattered electric field
produced by 𝑱d and 𝑴d is integrated.

As a result, 𝑍sc
𝑖 𝑗 can be obtained as the Laurent series with

respect to 𝑠, but it converges only when the dimension of the
scatterer is less than 0.25 to 0.3 times the wavelength [5], [6].

IV. WPT SYSTEM CONTAINING FERRITE SHIELDS

The extended IEM has been applied to a WPT system
containing ferrite shields, which is shown in Fig. 4 [6]. The
radius and conductivity of the wires were assumed to be
0.4 mm and 58 S/m, respectively. The Tx and Rx sides were
arranged in mirror symmetry. Whereas the circuit model in [6]
contains dependent voltage sources to represent the higher-
order impedance components, this paper newly considers a
circuit model approximated only by passive elements, which
is shown in Fig. 5 and can be analyzed with versatile circuit
simulators. Assuming uniform current distributions of the coils
and using the extended IEM, the self- and mutual impedances
between port 1 (Tx side) and port 2 (Rx side) are obtained in
the following form:

𝑍𝑖 𝑗 = 𝑠𝑍 (1)
𝑖 𝑗 + 𝑠3𝑍 (3)

𝑖 𝑗 + 𝑠4𝑍 (4)
𝑖 𝑗 + · · · , 𝑖, 𝑗 = 1, 2, (1)

where the self-impedance components due to the finite con-
ductivity of the wires, which are denoted by 𝑍1 and 𝑍2 in
Fig. 5, are not included. On the other hand, the self- and
mutual impedances between ports 1 and 2 in Fig. 5, excluding
𝑍1 and 𝑍2, can be expanded as follows:

𝑍11 = 𝑠(𝐿1 + 𝐿3) − 𝑠3 (𝐿2
1𝐶1 + 𝑀2

21𝐶2)
+ 𝑠4 (𝐿2

1𝐶
2
1𝑅1 + 𝑀2

21𝐶
2
2𝑅2) + · · · , (2)

𝑍21 = 𝑠(𝑀21 + 𝑀43) − 𝑠3 (𝐿1𝐶1 + 𝐿2𝐶2)𝑀21

+ 𝑠4 (𝐿1𝐶
2
1𝑅1 + 𝐿2𝐶

2
2𝑅2)𝑀21 + · · · , (3)

𝑍22 = 𝑠(𝐿2 + 𝐿4) − 𝑠3 (𝑀2
21𝐶1 + 𝐿2

2𝐶2)
+ 𝑠4 (𝑀2

21𝐶
2
1𝑅1 + 𝐿2

2𝐶
2
2𝑅2) + · · · . (4)

Here, the Tx and Rx sides are assumed to be symmetric,
i.e., 𝑍11 = 𝑍22, 𝐿1 = 𝐿2, 𝐿3 = 𝐿4, 𝐶1 = 𝐶2, and 𝑅1 = 𝑅2,
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Fig. 4. WPT system containing ferrite shields [6].
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Fig. 5. Circuit model of the WPT system approximated only by passive
elements.

and the terms proportional to 𝑠4 in (2) and (3) are assumed to
coincide with 𝑍 (4)

11 and 𝑍 (4)
21 , respectively, i.e.,

(𝐿2
1 + 𝑀2

21)𝐶2
1𝑅1 = 𝑍 (4)

11 , (5)

2𝐿1𝑀21𝐶
2
1𝑅1 = 𝑍 (4)

21 . (6)

In [4], the equations corresponding to (5) and (6) were solved
assuming 𝑍 (4)2

𝑖 𝑗 ≃ 𝑍 (4)
𝑖𝑖 𝑍 (4)

𝑗 𝑗 , but this approximation is not used
here. (5) and (6) can be solved for 𝑀21 and 𝑅1 as follows:

𝑀21 =
𝐿1𝑍

(4)
21

𝑍 (4)
11 +

√
𝑍 (4)2

11 − 𝑍 (4)2
21

, (7)

𝑅1 =
𝑍 (4)

11 +
√
𝑍 (4)2

11 − 𝑍 (4)2
21

2𝐿2
1𝐶

2
1

, (8)
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TABLE I
CIRCUIT PARAMETERS WITH AND WITHOUT THE FERRITE SHIELDS

w/ shields w/o shields

𝑅0 [Ω] 50.00 24.00
𝐶0 [pF] 274.6 371.9

𝐿1 = 𝐿2 [µH] 1.896 1.097
𝑀21 [µH] 1.632 1.081

𝐿3 = 𝐿4 = −𝑀43 [nH] 439.0 510.9
𝐶1 = 𝐶2 [fF] 7.809 4.558
𝑅1 = 𝑅2 [kΩ] 5.010 33.66
𝑍1 = 𝑍2 [mΩ] 311.4 + 𝑗301.4

which means that the choice of 𝐿1 and 𝐶1 remains arbitrary.
The inductances 𝐿1, 𝐿3, and 𝑀43 were specified so that the

terms proportional to 𝑠 in (2) and (3) coincide with 𝑍 (1)
11 and

𝑍 (1)
21 , respectively, i.e., 𝐿1 + 𝐿3 = 𝑍 (1)

11 and 𝑀21 + 𝑀43 = 𝑍 (1)
21 .

Although the relationship between 𝐿1 and 𝑀21 is constrained
by (7), there remains a degree of freedom in the ratio of 𝐿1 to
𝐿3. Here, the inductances were determined by adding a new
constraint 𝐿3 = −𝑀43, which means that 𝐿1 was set to the
largest possible value.

Then, 𝐶1 is determined so as to minimize the residual sum
of squares (RSS) in the impedance components proportional
to 𝑠3, which is defined as follows:

RSS =
[
𝑍 (3)

11 +
(
𝐿2

1 + 𝑀2
21

)
𝐶1

]2
+
[
𝑍 (3)

21 + 2𝐿1𝑀21𝐶1

]2
. (9)

𝐶1 that minimizes the RSS can be expressed as follows:

𝐶1 = −
(
𝐿2

1 + 𝑀2
21
)
𝑍 (3)

11 + 2𝐿1𝑀21𝑍
(3)
21

𝐿4
1 + 6𝐿2

1𝑀
2
21 + 𝑀4

21
. (10)

Table I summarizes the determined circuit parameters with
and without the ferrite shields, where the port impedance 𝑅0
and matching capacitance 𝐶0 are chosen to be appropriate
values depending on the presence or absence of the shields.
Additionally, the value of 𝑍1 = 𝑍2 is for 6.78 MHz, and it
differs for other frequencies.

Fig. 6 shows the frequency dependencies of the transmission
coefficient |𝑆21 | and radiation loss 𝑃r with and without the
ferrite shields, where the results by the circuit model and full-
wave MoM are compared. It can be seen that the broadband
transmission characteristics and reduced radiation loss owing
to the shields are adequately reproduced in the circuit model.

V. CONCLUSION

In this paper, the basic concept and theoretical extension
of the IEM were briefly summarized. Then, a circuit model
approximating a WPT system containing ferrite shields only
by passive elements was proposed and validated. The IEM will
be further extended as required by practical applications.
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Fig. 6. Frequency dependencies of (a) transmission coefficient |𝑆21 | and
(b) radiation loss 𝑃r with and without the ferrite shields.
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