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Abstract—A novel modeling method of two-dimensional 
infinite periodic structures is introduced, and they are modeled 
as infinite surfaces whose reflection coefficients are numerically 
known. In the similar manner as a layered media Green’s 
function (LMGF), a reduced form of Green’s function for the 
two-dimensional infinite periodic structures is obtained. 
Self/mutual coupling between source and observation point is 
formulated via method of moments (MoM). Numerical 
simulation of an antenna over frequency selective surfaces (FSSs) 
is performed, and it is found that the proposed modeling method 
works well for including contribution of the FSSs to the 
numerical results.  

Keywords—Periodic structure, Reflection coefficient, Green’s 
function, Method of moments, Frequency selective surface 

I. INTRODUCTION 

Periodic structures have been widely used for designing 
practical antennas or scatterers, such as array antennas, FSSs, 
radio wave absorbers, and reflectarrays [1-3]. For example, 
array antennas for wireless power transfer systems and wireless 
communications have been designed as periodic structures[4]-
[9]. Radio wave absorbers for radio frequency identification 
systems have been developed as periodic structures [10, 11]. 
Reflectarrays for wireless communication systems have been 
designed as periodic structures of non-identical elements [12-
14]. Diagnosis technologies for finding defective elements or 
unintentional radiation sources using eigenmode currents of 
periodic array antennas have been developed so far [15-17].  

On the other hand, numerical analysis methods are 
necessary for designing the periodic structures. MoM is well-
known as one of the efficient numerical analysis methods for 
periodic structures [18]. During the numerical analysis of the 
periodic structures using MoM, two different options are 
available for their modeling, i.e. modeling as finite ones or 
infinite ones. Numerical analysis of the finite periodic 
structures using the MoM requires large computational cost 
because their size is usually larger than wavelength. Therefore, 
reduction of computational cost using fast MoM such as 
iterative solvers or direct solvers is necessary [19-22]. On the 
other hand, numerical analysis of the infinite periodic  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Concept of  the presented method. 

structures using the MoM only requires small computational 
cost because the infinite periodic structures can be modeled as 
so-called unit cell via a periodic boundary condition (PBC) 
[23-26].  

It is well-known that periodic structures enhance the 
performance of antennas. For example, an artificial magnetic 
conductor has been used to design low-profile antennas [27]. 
Instead of ground planes, bandstop FSSs have been introduced 
and multiband reflectarrays have been developed [28]. 
Although the periodic structures can enhance performance of 
antennas, numerical analysis of antennas with periodic 
structures is cumbersome.  

In this paper, a novel modeling method of two-dimensional 
infinite periodic structures demonstrated in [29] is presented. 
The presented method models the infinite periodic structures as 
infinite surfaces via reflection coefficients. The reflection 
coefficients of the infinite periodic structures are easily 
available using PBC. Once the reflection coefficients are 
obtained, response from the infinite periodic structures can be 
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formulated by a form of Green’s function. Self/mutual 
impedance expression between source and observation points 
is obtained by MoM formalism. Numerical analysis is 
performed, and it is demonstrated that the presented method 
enables to model the infinite periodic structures accurately.  

II. MODELING OF INFINITE PERIODIC STRUCTURES 

Fig. 1 shows concept of the modeling of the infinite 
periodic structures via the reflection coefficients. The presented 
method models the infinite periodic structures as a surface 
whose reflection coefficients are numerically known. The 
reflection coefficients of the infinite periodic structures are 
obtained using MoM with PBC. In the similar manner as the 
LMGF, electromagnetic response between source and 
observation points can be described as summation of free-
space Green’s function corresponding to direct wave and 
TE/TM components of dyadic Green’s function corresponding 
to reflection wave [30-33]. Once the electromagnetic response 
between source and observation points are described, 
self/mutual impedance between them can also be described 
using MoM. According to the presented method, mesh-free 
modeling of the infinite periodic structures is available. This 
point is a big advantage of the presented method. Rigorous 
description on the presented method is omitted here due to the 
limitation of the pages but is found in a previous publication 
[29].  

III. NUMERICAL ANALYSIS 

Here, performance of the presented method is demonstrated 
via a numerical example. Numerical analysis of a rectangular 
loop antenna over FSS composed of circular loop elements 
shown in Fig. 2 is performed.  

Directivity of the rectangular loop antenna over the FSS is 
shown in Fig. 3. As a reference, Fig. 3 includes the directivity 
of the rectangular loop antenna over finite FSS composed of 7 
x 7 circular loop elements. It is found that directivity of the 
rectangular loop antenna over the infinite FSS obtained using 
the presented method agrees well with that over the finite FSS. 
At this frequency band, it has been confirmed that the FSS 
demonstrates similar reflection performance as a ground plane 
[29]. Therefore, direct wave from the rectangular loop antenna 
and reflection wave from the FSS are in-phase at broadside 
direction. As a result, directivity of the rectangular loop 
antenna over the FSS becomes maximum at the broadside 
direction.  

TABLE I shows CPU time for numerical analysis. The 
CPU time corresponds to 61 points of frequency response from 
100 MHz to 400 MHz. It is found that CPU time of the 
presented method is much shorter than that of Full-wave 
analysis. As have been mentioned earlier, the presented method 
enables mesh-free modeling of the FSS and the total number of 
unknowns is only 44. On the other hand, full-wave analysis (i.e. 
conventional MoM) requires mesh modeling of the FSS and 
the total number of unknowns is 2249. Such difference of the 
total number of unknowns results in significant difference of 
the CPU time.  

 

Fig. 2 Rectangular loop antenna over circular loop FSS 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Directivity. 

TABLE I.  CPU TIME  

Method CPU time [sec.] 

Full-wave 21454 

Presented 210 

IV. CONCLUSIONS 

In this paper, a novel modeling method of two-dimensional 
infinite periodic structures was presented. The presented 
method enables mesh-free modeling of the two-dimensional 
infinite periodic structures using their reflection coefficients. 
Numerical simulation was performed, and it was demonstrated 
that the presented method reduces computational cost without 
degrading accuracy.  
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