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1. Introduction

Recent advancements beyond the 5G technology, which

have resulted in faster data transmission and the ability to

connect numerous devices simultaneously, have garnered

significant attention. However, the limited coverage area

of radio waves is a challenge faced by the evolution beyond

5G. This limitation arises from the weak diffraction of

millimeter waves emitted from base stations, which

hinders their reach into areas obstructed by structures,

such as buildings. Reflective arrays (RA) have emerged as

promising solutions for addressing this issue [1]. Fig. 1

illustrates the expanded coverage area achieved through

the RA, and Fig. 2 presents a conceptual depiction of the

RA setup. The RA comprises reflector elements arranged

in a periodic array, with adjustments in the electrical

length of each element, enabling control over the phase of

the scattered waves, thereby facilitating arbitrary beam

direction adjustments [2].

An example of phase control involves a device that

uses the diode switching-induced changes in the

electrical length [3]. However, concerns have arisen

regarding current distortion owing to diode rectification

characteristics, potentially leading to harmonic

generation and interference in other frequency bands.

Consequently, our focus has shifted toward phase control

using the dielectric anisotropy of nematic liquid crystals

(LCs). This unique method involves beam control

through alignment manipulation of LC molecules using

a low-frequency alternating current (AC) voltage [4].

Nevertheless, achieving substantial changes in dielectric

constant necessitates thick LC layers (50 µm or more),

resulting in prolonged fall-response times of LC molecules,

e.g., 170-190 s [5] and 290 s [6]. The switch-off time toff of the

nematic LC liquid crystals is strongly affected by the

thickness d, as shown in the following equation: [7] [8]

(1)
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Fig. 2 Radio wave reflection.



where η is the rotational viscosity of the LC, k is the

appropriate expression for the elastic constant of the LC

mixture.

To address this issue, methods employing polymer-

stabilized LC (PSLC) [9] and polymer-dispersed LC

(PDLC) [10] have been investigated. Cross-comb electrode

methods have been proposed for this purpose. Examples

include the interdigital gap method [11], and the terahertz

in-plane and terahertz out-of-plane (TIP-TOP) method[12].

TIP-TOP method is two-directional electric field driving

and adopt for phase shifter. A horizontal response time of

5.8 s was achieved using the TIP-TOP method. However,

TIP-TOP method is not adopt for reflective array but

adopt for phase shifter. If TIP-TOP method use for RA,

very slow for 5G data transfer and further research is

required on the electrode gap and LC direction.

Considering these challenges, we proposed a two-

direction electric field driving device with a comb-type

electrode substrate on one side of the LC layer and study

the directional characteristics of the electrode gap and LC.

This design aims to facilitate swift response times,

mitigate the driving voltage demands, and ensure

adequate phase modulation. This study introduces an

LC device featuring this two-direction electric field

driving structure, and the evaluation focuses on the

fundamental behavior of LC orientation changes within

the fabricated device.

2. Operating principle of two-direction
electric field drive structure

Fig. 3 illustrates the movement of a thin and thick LC.

Specifically, Fig. 3(a) shows a thin LC immediately after

the applied voltage is OFF. Fig. 3(b) shows a thin LC the

thin LC in stable state. Fig. 3(c) shows a thicker LC with

an applied ON voltage, whereas Fig. 3(d) shows a

thicker LC immediately after the applied voltage is OFF.

Furthermore, Fig. 3(e) shows the thick-film LC in a

stable state after certain time has elapsed because the

voltage is turned off. The reorientation mechanism in

conventional LC devices relies on the alignment of

surface-generated regulatory forces of the film. As

shown in Fig. 3(a), many LCs in thin structures are

affected by the alignment film. Therefore, the LC

becomes stable early, and the response speed is fast. In

the other hand, as shown in Fig. 3(d), the center of the

thick LC experienced a weak force from the alignment

layer, which reduced the fall response time. The fall

response time was correlated with the square of the LC

layer thickness.

This section elucidates the operating principle of the two-

direction electric field driving device, as depicted in Fig. 4.

As illustrated in Fig. 4(a) and (b), a low-frequency AC

power supply was connected. As shown in Fig. 4(a), an

electric field was applied vertically during the elevation

of LC molecules. Conversely, a horizontal electric field

was applied between the upper right and left electrodes

during the descent from the vertical orientation state to

the initial orientation, as illustrated in Fig. 4(b). These

applied electric fields expedite the fall response, which is

a characteristic of the proposed two-direction electric-

field driving device. Moreover, as no polymer materials
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Fig. 4 Schematic of two-direction electric field driving structure.

Fig. 3 Movement in thicker LC.



were introduced in the LC layer, a reduction in driving

voltage was anticipated, as discussed in the preceding

section. However, as shown in Fig. 5(a), a low electric

field was predicted between the upper right and left

electrodes when voltage was applied to the vertical

drive. Similarly, as shown in Fig. 5(b), a low electric field

was predicted near the bottom electrode when a voltage

was applied to the horizontal drive. The movement of an

LC in such low electric field regions remains unexplored.

Therefore, we examined the movement of an LC under

electrode gap conditions.

3. Response time measurement using a two-
direction electric field driving device

3.1 Structure of the elements

A glass substrate with comb-shaped electrodes was

employed to fabricate a two-direction electric field-

driving device, as shown in Fig. 6. The glass is soda-lime

glass. Soda-lime glass has a higher loss of electro-

magnetic waves due to transmission than quartz,

however soda-lime glass has sufficient transmission to

validate RA. The electrode material was indium tin

oxide, which is sufficiently thin to be considered

transparent to millimeter waves. Here, the width of the

comb-shaped electrode is referred to as the electrode

width and the space between the electrodes is called the

inter-electrode gap.

Planar alignment layers (AL1254) were applied to the

comb and full-face electrode substrates, and nematic LC

(E-7, LCC) was injected into empty cells fabricated with

50 µm thick Mylar film spacers. The planar alignment

layers and positive nematic LC were used because

planar alignment layers generally have stronger anchor

strengths than vertical alignment layers. The

dimensions of the comb electrodes were: inter-electrode

gap: 10, 50 µm and electrode width: 10 µm. The 10, 50

µm electrode gaps were chosen to elucidate the

difference between the electrode gaps in later

simulation, and ITO patterns can easily be made with

electrode gap of 10 µm or greater. To compare the

response times, a planar alignment layer was applied to

the solid electrode substrate, and an LC cell with solid

top and bottom electrodes, which served as the reference

sample, and was fabricated using the same process (this

served as the reference sample).

3.2 System for measuring response times and

experimental parameters

Fig. 7 shows a diagram of the measurement system.

For the measurement of transmitted light intensity, an

LC cell was placed between two polarizers with

orthogonal polarization axes at 45° to the polarization

axis, and light from a halogen lamp was irradiated onto

the device. The light transmitted through the LC layer is

converted into a voltage waveform and observed.

Furthermore, the change in the transmitted light

intensity when the direction of the electric field was

applied to the LC layer was measured using a sensitive

charge-coupled device (CCD) camera. The response time

was determined from the change in the transmitted

light intensity when the electric field driving element

was switched in both directions. Moreover, a square-

wave voltage of 30 Vrms, 1 kHz, and a duty ratio of 50%

were applied.

The response time when the direction of the electric

field applied to the LC layer switches from horizontal to

vertical is defined as the vertical-field response time. In
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Fig. 7 Measurement system diagram.Fig. 6 Model of two-direction electric field driving device.

Fig. 5 Movement of LC and electric field in two-direction electric

field driving.



contrast, the horizontal field response time was defined as

the time when the direction was switched from vertical to

horizontal. The driving voltage was set, and the response

time was evaluated when the change in light intensity

converged to 90% or more after voltage application.

3.3 Assessment of response time measurement

outcomes

The response times of the reference samples are listed

in Table 1. Additionally, Fig. 8 shows the time

characteristics of the transmitted light intensity when

vertical and horizontal electric fields were applied. The

light intensities in Fig. 8 were normalized to the

horizontal driving-light intensities. The response times

ranged between 10% and 90%, where 0% and 100%

correspond to the minimum and maximum light

intensities, respectively.

The duration of response to vertical fields in the two-

direction electric field driving device were 177 ms for 10

µm gap, as depicted by the blue lines, and 35 ms for 50

µm gap, as depicted by the black lines in Fig. 8(a) and

(b). In contrast, horizontal field responses were 3 ms for

10 µm gap, as depicted by the blue line, and 49 ms for 50

µm gap, as depicted by the black line in Fig. 8(b). The

horizontal field responses in 50 µm gap is 480 times

faster than the fall response in reference sample, and

100 times firster than former TIP-TOP method phase

shifter [12]. These findings confirm that applying a

voltage during the falling edge accelerates the

reorientation of the LC molecules.

However, based on the aforementioned outcomes, the

responses to horizontal electric fields in the device with

a 50 µm inter-electrode gap were approximately 16

times longer than those in the device with a 10 µm gap.

This prolonged duration may stem from the heightened

ratio of LC molecules influenced by the electric field,

accompanied by an increase in the number of molecules

undergoing elastic alignment.

4. Evaluation of LC orientation state

We evaluated the alignment condition within a two-

direction electric field driving device using the

LCDMaster2D (Shintech) software that employs

numerical simulations based on the elastic body theory of

LCs. The simulation conditions are listed in Table 2. Figs.

9 and 10 illustrate the hue distributions of the LC
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Fig. 9 Hue distribution image in the director direction (Gap10 µm).Fig. 8 Light intensity vs. time characteristics.

Table 1 Summary of response time.

Table 2 Simulation condition.



molecules corresponding to their director tilt angles. The

LC is asymmetric because its boundaries have a pretilt

angle. The average tilt angles of the LC molecules,

calculated through image analysis of the hue distributions

shown in Figs. 9 and 10, are summarized in Table 3. Since

the thickness of the LC layer is small compared to the

wavelength, the LC layer can be considered as a

capacitor, and the incident high-frequency electric and

magnetic fields are assumed to be directed in the

thickness direction. Therefore, we evaluated the LC

molecular angles in the direction of the thickness.

Table 3 lists that the discrepancy in the average tilt

angle of the LC molecular director between vertical and

horizontal electric fields at a 10 µm electrode gap was 4.9°.

Conversely, at 30, 40, 50 µm gaps, those differences

increased to 7.4°, 7.1°, 7.2°, indicating more pronounced

movement of LC molecules at the larger gap. In traditional

thin LC layers, sufficient phase modulation can be achieved

through electric-field driving. However, in thicker LC

layers, electric field penetration is limited, leading to

internal LC movement via elastic alignment propagation.

A discussion of the results is presented in Fig. 11.

When the gap between the electrodes was increased

with a horizontal electric field, as depicted in Fig. 11 (b),

the horizontal electric field spread in the thickness

direction compared with the narrow gap shown in Fig.

11(a). The spread of the horizontal electric field drives

the LC over a large area. However, when the bandgap

between the electrodes was increased with a vertical

electric field, as illustrated in Fig. 11(d), a low-electric-

field region was formed between the upper electrodes, as

shown in Fig. 11(c). In this case, the effect of elasticity

became dominant, resulting in a lower response speed.

These results confirm the existence of a tradeoff

between the change in the dielectric constant and the

response time at the gap length between the electrodes.

5. Millimeter Wave Characteristic
Analysis

In this section, we analyze and evaluate the electric

field distribution and zeroth-order reflected wave

characteristics when millimeter waves are irradiated

onto an RA with a two-direction electric field driving

device using an LC orientation and a reflected

electromagnetic wave analysis simulator (LC-RP

Analyzer, Shintech Corp.). The analysis was conducted

based on the exact coupled wave theory. Simulations

were performed for a device featuring a two-direction

drive structure implemented in an actual RA. The

structural design is shown in Fig. 12. This simulation

uses infinity periodic structure to x direction for

millimeter wave. The liquid crystal simulation

performed only at center unit by calculation limit.  The

incidence of the electric field was directly above of the

RA. Polarization was linear and perpendicular to the

comb electrode. The pretilt angle, anchoring strength,
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Fig. 11 Movement differences between narrow-gap and wide-gap LC.

Fig. 10 Hue distribution image in the direction of the director

(Gap50 µm).

Table 3 Dielector mean tilt angle of LC molecules.



and elastic constants are the same as in Table. 2. The

dielectric constant and dielectric loss tangent at 19 GHz

(wavelength of 15.8 mm) are listed in Table 4. [13].

Copper was used as the combing electrode which

conductivity is 5.8 × 107 [S/m]. .

Initially, the intensity distribution of the high-

frequency electric field near the LC layer was examined

for the reflected waves. An image of the hue distribution

corresponding to the electric field intensity is shown in

Fig. 13. This illustrates that the electric field is strong at

both ends of the reflected patch and its lower part at a

wavelength of 7 mm. This observation suggests that the

electromagnetic waves were absorbed inside the LC layer,

confirming a resonance phenomenon unique to the antenna.

The wavelength-phase modulation characteristics of

the calculated reflected zeroth-order diffraction wave in

the far field were investigated when the element was

irradiated with millimeter waves. Fig. 14 shows a graph

of each electric field direction in the proposed method.

The graph demonstrates that the phase modulation

occurred at a resonance wavelength of approximately 7

mm. The phase modulation at a wavelength of 7 mm

was 34.9 (deg.) when a vertical field was applied. The

phase modulation at the wavelength of 7 mm was 73.5

(deg.) when a horizontal electric field was applied. These

results indicate that a larger phase modulation is

obtained when a horizontal electric field is applied.

Fig.15 shows the reflectance of the proposed device

when the irradiation wavelength was varied. The

reflectance was decreased by driving the horizontal

electric field. The relationship between reflectance and

impedance is given as follows [14]:

(2)
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Fig.15 Wavelength-Reflectance characteristics.

Fig.14 Wavelength-phase property.Fig. 12 Structural design of RA elements in simulation.

Fig.13 Distribution of high-frequency electric field in the LC layer.

Table 4 LC RA simulation conditions.



where, Z1 is the air impedance; Z2 is the impedance of

the liquid crystal The dielectric constant increases with

horizontal and electric field incidence . This equation

shows that as the impedance difference between the

liquid crystal impedance and air increases, the

reflectance decreases. The reflectance decreases at a

wavelength of 7 mm, which matches the decrease in the

reflectance and resonance wavelengths of this formula.

These results indicate that the phase of an incident

millimeter-wave of a specific wavelength can be

modulated by driving the LC using a unidirectional

electric field driving device.

6. Conclusions

This study introduces a method for fabricating thick-

film LC devices for millimeter-wave phase modulation

using an electrode structure in which LC molecules are

driven by a bidirectional electric field. The proposed

structure is expected to accelerate the fall response of

thick-film LCs. In addition, the LC orientation and

reflected wave behavior of the fabricated devices were

evaluated using simulations. Our findings demonstrate

that the proposed method offers guidance for enhancing

the dielectric constant change and enables the phase

modulation of reflected millimeter waves.
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