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Abstract—In this letter, we propose a new structure for liquid
crystal reflectarray (LCRA) aimed at improving response time.
In LCRA, liquid crystal (L.C) serves as a phase-tunable material
that can be continuously modulated by an external electric field.
However, the inherently slow response time of LC remains a
significant limitation for practical applications. To address this
issue, we introduce a structure incorporating partition walls
with vertical alignment films on the surface of the LCRA. This
design induces an additional anchoring force on the LC layer,
facilitating faster reorientation of LC molecules, which results in
significant reduce of the response time. For validation, an LCRA
prototype based on the proposed structure was fabricated and
experimentally measured. The results demonstrate a substantial
improvement in response performance, with the decay time
reduced from 6.62 s to 0.73 s. It is believed that the proposed
LCRA structure will be a promising candidate for future RA
applications.

Index Terms—Liquid crystal (L.C), millimeter wave, reflectar-
ray (RA), response time.

I. INTRODUCTION

OR the next generation of wireless communications, base

station antennas are required to support high gain, high
frequency, and rapid beam scanning capabilities. Reconfig-
urable intelligent surfaces (RISs) have emerged as a promising
technology to meet these demands, with reflectarray (RA) be-
ing a representative implementation [1]. RA can achieve beam
control by adjusting the phase and amplitude of individual
elements, thereby enhancing the electromagnetic (EM) signal
in a targeted region or enabling dynamic beam steering. This
functionality allows RA to effectively address the coverage
needs of complex environments [2], [3].

Different control methods for RAs have been explored,
including those based on diodes [4]-[6], mechanical actua-
tion [7]-[9], and liquid crystal (LC) technology [10]-[17]. Me-
chanical control approach is structurally complicated, which
also suffers from slow response time, while MEMS and diode-
based methods often involve high cost and face challenges
in assembly and integration. In contrast, LC offers several
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advantages, such as low cost and ease of compatibility with
planar structures, making it suitable for RA applications.
Moreover, LC molecules can be reoriented by an external
electric field, enabling continuous tuning of permittivity. With
this property, liquid crystal reflectarrays (LCRAs) can achieve
more precise beam scanning.

Despite the many advantages of liquid crystals (LCs), their
inherently slow response time remains a major challenge.
The response time consists of the rise and decay times. The
rise time mainly depends on the applied voltage and can be
shortened by increasing the bias voltage, whereas reducing
the decay time is more difficult, attracting significant research
attention [18], [19]. One approach to shorten the decay time
is introducing a polymer network into the LC layer [18]. The
polymer network anchors the LC molecules and strengthens
intermolecular forces, thereby accelerating relaxation. How-
ever, it reduces the dielectric anisotropy and reflection phase
range. The increased intermolecular force also demands a
higher bias voltage for reorientation. Another method employs
dual-frequency LC (DFLC) [19], which exhibits both positive
and negative dielectric anisotropy frequencies [20]. Under a
positive frequency bias, LC molecules align parallel to the
electric field, whereas under a negative frequency, they orient
perpendicularly. DFLCs offer faster decay than nematic LCs
but suffer from high loss tangent and require a complex bias
network.

In this letter, an LCRA employing a partition-wall structure
coated with vertical alignment films is proposed. This struc-
ture introduces additional anchoring forces to accelerate the
recovery of LC molecules without excessively restricting their
reorientation under bias voltage, thereby effectively shortening
the decay time while maintaining a sufficient reflection phase
variation range. The remaining parts of this letter are organized
as follows. Section II introduces the detailed configuration of
the partition wall structure, with simulation results for validat-
ing its effectiveness. In Section III, the measured performance
of fabricated LCRA prototypes with and without partition
walls is demonstrated, which validates that the proposed
structure significantly reduces decay time. Finally, Section IV
concludes this work.

II. STRUCTURE AND ANALYSIS

In previous studies of LCRAs, a conventional structure
comprising a superstrate, electrodes, and a metal ground plane
combined with planar alignment films has been widely adopted
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to control the orientation of LC molecules [21]-[23]. When
a bias voltage is applied, the LC molecules are reoriented in
response to the electric field across the LC layer. When the
bias voltage is removed, the molecules gradually return to their
initial state due to the surface anchoring effect imposed by the
planar alignment layers on both the upper and lower interfaces
of the LC layer [24]. For such a configuration, the decay time
T4 can be given as [25], [26]:

vhic
= Ko
where -y is the rotational viscosity, K is the elastic constant of
the LC, and hpc is the thickness of the LC layer. Observed
from the condition 74 o h?., the decay time is greatly
affected by the thickness of the LC layer. Increasing the LC
layer thickness typically results in a longer decay time. On the
other hand, reducing the LC thickness will unfortunately lead
to the increase of reflection loss [27]. This trade-off highlights
a key limitation of the conventional configuration: when a
thicker LC layer is employed, the LC molecules near the center
of the layer will be farther from the alignment film surface,
where the anchoring effect will be weaker. As a result, the
molecules in the central region respond more slowly than those
near the alignment films, leading to an extended decay time
for the LCRA.

To reduce the decay time, a partition wall structure coated
with polyimide vertical alignment films is embedded into the
LC layer. The LC is sandwiched between a superstrate and a
metal ground plane, both of which are coated with polyimide
planar alignment films. The partition walls are coated with
vertical alignment films on their surfaces [28]. The LC layer
is divided by partition walls, with each LC segment occupying
a volume equal to the gap between adjacent walls. Both the
planar and vertical alignment films exert anchoring forces
that promote horizontal orientation of the LC molecules. The
configurations of the LC cell using partition wall structure
without and with bias voltages are illustrated in Fig. 1(a) and
Fig. 1(b), respectively. After removal of the bias voltage, this
enhanced anchoring effect facilitates a faster relaxation of the
LC molecules back to their initial state, thereby reducing the
overall response time.
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Fig. 1. LC molecules states inside the partition wall structure (a) without
bias voltage, and (b) with bias voltage.

The proposed unit cell structure of LCRA is depicted in Fig.
2(a) and a zoom-in view of proposed partition wall structure
is depicted in Fig. 2(b). It consists of five parts arranged
from top to bottom: the superstrate, multi-resonant structure,
LC, partition walls and metal ground, where the partition

walls are placed inside the LC layer as depicted in Fig. 2(c).
The multi-resonant structure is constructed by a dual size-
different patch connected with bias line, as depicted in Fig.
2(d), which can provide sufficient reflection phase variation,
and the patch dimensions are optimized to maximize the
achievable reflection phase variation. Planar alignment films
are deposited on the superstrate and the metal ground to
control the orientation of LC molecules toward x-direction,
and the vertical alignment films were deposited on the surface
of partition walls further force LC molecules oriented toward
x-direction, which is helpful to improve the response time of
LCRA.
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Fig. 2. (a) Perspective view, (b) zoom-in view (c) side view and (d) top view of
the proposed LCRA unit cell structure. The parameters are Wp,=Gp=0.02 mm,
L1=1.56 mm, L2=1.66 mm, W1=1.30 mm,W2=1.10 mm, W3=0.20 mm,
D1=D3=0.15 mm, D2=0.30 mm, p=3 mm, hsyp=0.5 mm, and h,c=0.045
mm.

A simulation was conducted using LCD Master software
[29] to evaluate the decay time of the proposed LC struc-
ture with different partition wall spacings. The structure for
simulation is depicted in Fig. 3(a). The anchoring energy of
alignment films is set as 1075 J/m? matching the polyimide
alignment films used in this letter. The partition wall spacing
G, is set from 20 um to 50 um, while maintaining a constant
LC layer thickness of 45 um. ZOC LC was used in all cases,
and a bias voltage of 40 V was applied. In the simulation,
the decay time is defined as the duration required for the
normalized capacitance of proposed LC structure to decrease
from 100 % to 10 %, representing the relaxation process of
LC molecules following the removal of the bias voltage. The
decay time for different wall spacings G, is presented in
Fig. 3(b). Since the partition walls are coated with vertical
alignment films, reducing the spacing between adjacent walls
decreases the distance between these films. Consequently, the
alignment films exert a stronger influence on the LC molecules
in the central region of the LC layer, which facilitates faster
molecular reorientation and thereby shortens the LC decay
time. Among the simulated configurations, the structure with
20 um spacing exhibits the shortest decay time. Considering
the fabrication limitation, partition wall spacing and width
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are limited to 20 um for simulation and measurement in
subsequent experiments.
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Fig. 3. (a) Structure for simulation (b) Simulated decay time with different
spacings of partition walls.

Consequently, the proposed LCRA structure is analyzed
using full-wave electromagnetic simulation where the par-
tition wall is made by SU-8 3000 permanent photoresist
(e, = 3.72,tand = 0.03). The superstrate material is non-
alkali glass (¢,¢ = 5.4,tand = 0.007). The corresponding
reflection magnitude and phase are presented in Fig. 4(a) and
Fig. 4(b), respectively. The LC used for simulation is ZOC
whose relative permittivity and loss tangent under full bias
voltage and zero bias voltage are £,; = 2.56, tand; = 0.006,
ey = 3.80, tan d, = 0.003. It can be observed that as the bias
voltage increases (i.e., €,1 — €,/), the resonant frequencies
of the proposed LCRA are shifted to lower frequencies,
thereby altering the reflection magnitude and phase at certain
frequency points. The maximum amount of reflection phase
variation is 481°, observed at 45.2 GHz. The phase variation
range of larger than 360° is seen to be sufficient for the RA
design to ensure the large angle beam steering ability of the
proposed LCRA.

N - —sim.£,=2.56
< S S —Sim&) = 3.80
e 8200
%ﬂ %_
B g
£ R
g 20 = =
& —sim.€,=2.56 5
g —Sim.g; = 3.80 /- _
s —
42 43 44 45 46 47 48 49 42 43 44 45 46 47 48 49
Frequency (GHz) Frequency (GHz)
(a) (b

Fig. 4. Simulated frequency responses of (a) reflection magnitude and (b)
reflection phase of the proposed LCRA unit cell.

The top and side views of the LCRA unit without parti-
tion walls (i.e., the conventional LCRA structure) employing
single-patch and two-patch structures are presented in Fig. 5(a)
and Fig. 5(b), respectively. The simulated reflection phases
corresponding to these structures are presented in Fig. 5(c).
Compared with the conventional LCRA structure, the proposed
LCRA exhibits a relatively smaller reflection phase variation
since the partition walls partially occupy the LC layer region.
The two-patch structure is adopted to compensate for this
reduction, which significantly broadens the reflection phase
variation compared with that of the single-patch structure.
Consequently, the proposed LCRA still achieves a reflection
phase variation exceeding 360°.
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Fig. 5. Top and side views of the LCRA unit without partition walls em-
ploying (a) single-patch and (b) two-patch structures. (c) Simulated frequency
responses of the reflection phases for the single-patch and two-patch structures
filled with ZOC LC.

III. MEASUREMENT RESULTS

The proposed LCRA was fabricated for experimental ver-
ification. The partition walls were constructed using SU-8
3000 permanent photoresis fabricated by Dai Nippon Printing
(DNP) Co., Ltd. Fig. 6(a) presents two fabricated LCRA
samples, each of which is a 15x 17 unit array, with and without
the partition wall structure encapsulated within the LC layer.
The partition walls have a spacing and width of 20 um, and
a height of 45 um, thereby maintaining a uniform LC layer
thickness of 45 ym. For a fair comparison, 45 pm-thick spacers
were used in the LCRA without partition walls to ensure the
same LC layer thickness in both devices.

LCRA LCRA
without PW with PW,

(@ (b)

Fig. 6. (a) The prototypes of the proposed LCRA (PW = partition wall), (b)
the measurement environment with APFA and lens.

The reflection phase of LCRAs is measured by lens-load
printed antipodal fermi tapered slot antenna (APFA) [30],
using the Keysight Network Analyzer PSO08A, as shown in
Fig. 6(b). The low-frequency bias voltages are generated by
a computer-controlled NF Multifunction Generator WF1974
and amplified by NF High-Speed Power Amplifier 4005.

The measured frequency responses of the proposed LCRA
are presented in Fig. 7. A maximum reflection phase variation
of 447° is achieved at 45.3 GHz, which deviates from the
simulated result. This deviation is not attributed to insufficient
bias voltage, as the reflection phase remains nearly constant
with negligible variation when the applied voltage approaches
40 V. Instead, the deviation arises from the vertical alignment
films coated on the surfaces of the partition walls. These
films impose anchoring forces that hinder the reorientation
of LC molecules near the wall surfaces under bias voltage,
thereby restricting the overall deflection of the LC molecules
and reducing the achievable phase variation of the proposed
LCRA.
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Fig. 8(a) presents the measured decay times of the LCRAs
with and without partition walls. The measurements were
performed after applying a stabilized bias voltage of 40 V,
which was removed 1 s after the start of measurement. For the
LCRA with partition walls, the response time was measured
at 45.3 GHz, where the maximum reflection phase variation
of 447° was obtained. For the LCRA without partition walls,
the maximum reflection phase variation of 589° was observed
at 46.3 GHz, and the response time was measured at 44.75
GHz, where the same reflection phase variation as that of the
partition-wall-based LCRA was achieved. The difference in
operating frequency between the two structures arises because
the embedded partition walls alter the effective permittivity
of the LC layer. Nevertheless, the proposed partition wall
structure imposes no inherent frequency limitation, since its
effect is limited to the LC layer. In this study, the decay time of
the LCRA is defined as the duration required for the reflection
phase to reach 90% of its maximum variation after the bias
voltage is removed. The LCRA without partition walls exhibits
a decay time of 6.62 s, whereas the LCRA with partition walls
achieves a markedly shorter decay time of 0.73 s. These results
clearly demonstrate that the proposed partition wall structure
can significantly reduce the decay time of the LCRA.
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Fig. 7. Measured frequency responses of (a) reflection magnitude and (b)
reflection phase of the proposed LCRA under different bias voltages.

Reflection phase

Reflection magnitude (dB)

43 44 45 46 47 48 49
Frequency (GHz)

= 0 - — o 0 -

D g LCRA with partition walls

é-loo 2 100 —LCRA without partition walls

[ Q

é’ 2200 é -200

= o 300

g -300 § -

b g

t > -400

cé’ 400 LCRA with partition walls =

é 500 —LCRA without partition walls é -500

0 5 10 15 0 5 10

Time (s) Time (s)
(@) (b)

Fig. 8. Measured response time of (a) rise time and (b) decay time of the
proposed LCRA unit cell.

Fig. 8(b) shows the measured rise times of the two LCRA
structures. The rise time is defined as the duration required
for the reflection phase to reach 90% of its maximum vari-
ation after the application of the bias voltage. A 40 V bias
voltage was applied 1 s after the measurement began. The
LCRA with partition walls exhibits a rise time of 0.81 s,
whereas the LCRA without partition walls shows a shorter
rise time of 0.61 s. As expected, the presence of partition

TABLE I
COMPARISONS WITH PRIOR WORKS
[15] [16] | [18] | [19] | This work
Frequency
CHD) 375 100 100 | 100 45.3
Conventional LC LC DF
Technology LC +0D | +PN LC PWS
LC thickness 0.2 0.075 | 0.045 | 0.045 0.045
(mm)
Phase range 338 360 180 | 360 447
(deg.)
R‘S%;Ime 1.05 0.05 | 0.012 5 0.81
D“%“me 6.05 5 021 2 0.73

LC+OD = liquid crystal + overdrive; LC+PN = liquid crystal + polymer
network; DFLC = dual-frequency liquid crystal; PWS = partition wall
structure.

walls slightly increases the rise time due to the additional
horizontal anchoring force. However, this increase is relatively
minor compared with the significant improvement in decay
time. Therefore, the measurement results confirm that partition
walls with vertical alignment films substantially improve the
overall response performance of the LCRA. Table I provides a
comparison between the proposed LCRA and several previous
works. As can be seen, the proposed structure achieves a
significantly shorter decay time while maintaining a sufficient
reflection phase variation range.

IV. CONLUSION

In this work, a partition wall structure was embedded
into the LC layer to improve response time of the LCRA.
Vertical alignment films were applied to the surfaces of the
partition walls to provide additional anchoring effects, thereby
shortening the decay time. Two 15 x 17 unit LCRAs were
fabricated and measured, one with partition walls and the
other without partition walls for performance comparison.
Measurement results show that the proposed LCRA with
partition walls achieves a reflection phase variation of 447°
at 45.3 GHz, enabling wide-angle beam scanning capability.
More significantly, the response time is reduced from 7.23 s
to 1.54 s. The proposed LCRA sacrifices only a portion of the
reflection phase variation range in exchange for a significant
reduction in response time. Although the proposed structure is
more complicated to fabricate compared with the conventional
ones, the inclusion of partition walls enables approximately
a 50% reduction in LC consumption. The proposed LCRA
maintains a sufficient reflection phase variation range while
significantly reducing the response time, making it a promising
candidate for future high-speed and wide-angle beam scanning
LCRA applications.
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