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Abstract—In this paper, a compact self-packaged dc-40GHz 

substrate integrated suspended line (SISL) low pass filter (LPF) 

with the flexibly controllable cutoff frequency fc is proposed using 

symmetric tri-section stepped impedance resonators (ST-SIRs). 

The ST-SIR structure with low pass response is investigated 

theoretically and numerically. Moreover, a sharp roll-off rate 

performance is obtained by loading the L type center-symmetric 

spurlines which introduces controllable multiple transmission 

zeros (TZs). To further enhance the stopband performance of the 

LPF, the defected ground structures (DGS) integrated on the SISL 

are demonstrated. By surrounding with metallic vias and using 

the shielding layer of SISL, the radiation loss can be effectively 

reduced. For demonstration, a LPF prototype with a maximum in-

band insertion loss (IL) of 1.85 dB, an in-band return loss (RL) of 

more than 14.8dB, an out-of-band suppression of larger than 

17.2dB (from 43GHz-67GHz), and a size of 0.41λg×0.69λg×0.44λg 

is fabricated and measured. The measured and simulated results 

are in good agreement. 
 

Index Terms— Compact, low loss, LPF, SISL, ST-SIRs 

 

I. INTRODUCTION 

ITH the rapid development of 5G/6G communications, 

the demand for wideband applications surges, which puts 

forward more stringent requirements for mm-wave circuits 

today [1], [2]. In particular, low pass filters (LPFs) play a 

crucial role in suppressing harmonics and spurious signals in 

complex systems with multiple mixing and frequency 

multiplication stages [3]. Therefore, there is an urgent need for 

LPFs with compact sizes, low insertion losses, high frequency 

selectivity and wide stopband. 

Recently, some LPFs with high performance have been 

reported [4-6], [10], [12]. In [5], by employing asymmetric Pi-

shaped Defected Ground Structure (DGS), the low-pass filter 

achieved a sharp roll-off performance, but with a narrower 

passband range. In [8], a waveguide LPF in X-band with low 

loss and high out-of-band suppression level is proposed, but the 

waveguide structure is hard to integrate with other planar 

circuits. Commonly, step impedance resonators (SIR) [7], [8] 
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are used to design compact filters. However, the excellent 

performance of SIR filters based on microstrip circuits at low 

frequencies will be greatly deteriorated in mm-wave bands. To 

comply with the requirement of high performance and 

integration, the type of substrate integrated lines has been 

widely concerned nowadays [9]. Ref. [10] demonstrates a dc-

30 GHz LPF with compact size by using spoof surface plasmon 

polariton (SSPP) structure based on substrate integrated coaxial 

line (SICL), but the insertion loss (IL) reaches 2.1 dB. In [11], 

substrate-integrated suspended line (SISL) technology based on 

standard printed circuit board (PCB) manufacturing process is 

proposed. Owing to its advantages of low loss, light weight, 

high integration and self-packaging performance, it has been 

widely used in designing high performance filters [12]-[14]. In 

[12], an 11th-order generalized Chebyshev SISL LPF with a 

cutoff frequency of 18 GHz is demonstrated, which shows the 

possibilities of SISL in ultra-wideband circuit design. However, 

when designing larger bandwidth components, the method 

using high-order filters is relatively complex. In [13], a 

miniaturized SISL bandpass filter is proposed with an IL of 1.6 

dB at Ka-band, which demonstrates that SISL still has an 

excellent performance with low loss in the mm-wave band. 

Choi et al. in [15] proposed a compact wide-stopband LPFs 

design using SIR. This design controls the frequency response 

by adjusting the parameters of SIRs, achieving a wide stopband 

and compact size, which has a clear advantage in space-limited 

applications. However, this wide-stopband design may increase 

manufacturing complexity and may be affected by material 

properties and manufacturing tolerances in high-frequency 

performance. In [16], Zhang et al. extended the filter's stopband 

by integrating triple-mode resonators, enhancing the filter's 

selectivity. This design offers more design flexibility to meet 

the needs of specific applications, which is a significant 

advantage. However, integrating multi-mode resonators may 

increase the difficulty of design and tuning, and there may be 

issues of increased cost and complexity. Bakhtiar and Al-

Husseini's research [17] achieves miniaturization of LPFs 

Qiang Chen is with the Department of Communications Engineering, 

Tohoku University, Sendai 980-8579, Japan (e-mail: 

qiang.chen.a5@tohoku.ac.jp). 

Daotong Li and Naoki Shinohara is the with the Research Institute for 

Sustainable Humanosphere, Kyoto University, Kyoto 606-8501, Japan. (e-mail: 

shino@rish-kyoto.ac.jp). 

Color versions of one or more of the figures in this article are available 

online at http://ieeexplore.ieee.org. 

 

W  

This article has been accepted for publication in IEEE Transactions on Components, Packaging and Manufacturing Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCPMT.2025.3592083

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on July 28,2025 at 02:58:53 UTC from IEEE Xplore.  Restrictions apply. 

http://ieeexplore.ieee.org/


2 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

through the use of Complementary Split-Ring Resonators 

(CSRRs). This design offers significant advantages in space 

saving and integration, particularly in mobile and portable 

devices. However, the CSRR design may require precise 

manufacturing processes to ensure the desired electromagnetic 

performance, which could increase production costs and 

complexity. Ryu et al. [18] propose a 60-GHz bandpass filter 

using Asymmetric Stepped-Impedance Resonators (ASIRs), 

providing a high-performance filtering solution for 5G 

applications. This design meets the high-frequency and wide 

bandwidth requirements of 5G technology, but it may face 

challenges in material loss, potentially affecting its 

performance across a broader frequency range. Singh et al. [19] 

present a Substrate Integrated Waveguide (SIW) low-pass filter 

integrated with a DGS, demonstrating excellent performance in 

millimeter-wave applications. This design effectively 

suppresses unwanted modes and enhances filter selectivity, but 

the integration of DGS may increase design complexity and 

sensitivity to manufacturing tolerances. Li et al. [20] offer a 

compact LPF design using stub-loaded resonators, maintaining 

good performance while achieving miniaturization. However, 

the design of stub-loaded resonators may require precise 

dimensional control to ensure the filter's correct resonance, 

which could limit design flexibility. Kim et al. [21] propose a 

dual-band low-pass filter design that achieves dual-frequency 

filtering through asymmetric loading technology, potentially 

advantageous in multi-frequency applications. However, this 

design may require a complex tuning process to ensure filtering 

performance across both frequency bands, increasing the 

difficulty in design and manufacturing. 

In this paper, a dc-40 GHz LPF by using symmetric tri-

section stepped impedance resonators (ST-SIRs) based on self-

packaged SISL platform is proposed. The cutoff frequency fc 

can be flexibly adjusted by changing the physical sizes of the 

ST-SIRs. To improve the frequency selectivity of the LPF, a pair 

of center-symmetric L-type spurlines is loaded on SISL 

transmission line, which introduces additional transmission 

zeros (TZs) near the passband side and realizes a sharp roll-off 

skirt performance. The DGSs are loaded on top and bottom 

substrates of SISL to further broaden the stopband performance. 

The detailed analysis and design are in section II. Manufactured 

prototype and measured results are in section III. 

II. ANALYSIS AND DESIGN OF THE SISL LPF  

As shown in Fig. 1, the proposed SISL LPF consists of a five-

layer dielectric substrate. The top and bottom surfaces of each 

dielectric substrate are covered with copper layers (G1-G10). 

With the exception of Sub3, which uses Rogers 5880 (with h3 

= 0.254mm, εr = 2.2, tanδd = 0.0009), the other layers are low 

cost FR4 substrates (with h1 = h2 = h4 = h5 = 0.4mm, εr = 4.4, 

tanδd = 0.02). Sub2 and Sub4 are hollowed out to form air 

cavities, with the cavity width a = 3.5 mm, length b = 1.5 mm, 

and height H = h2 + h3 + h4. Sub1 and Sub5 construct effective 

electromagnetic (EM) shielding boundaries. The suspended 

line circuit is mainly laid on copper layer G5. DGS structures 

are symmetrically integrated on copper layer G2 ang G10, 

respectively. 

A. Analysis of symmetrical tri-section SIRs 

The proposed LPF circuit structure with loaded ST-SIRs 

based on SISL platform is shown in Fig. 2(a). Two λ/4 tri-

section SIRs are symmetric about the y-axis, which are loaded 

on a horizontal inductance suspended line to achieve low pass 

response. As illustrated in Fig. 2(b), the tri-section SIR consists 

of three transmission lines with electrical lengths θ1, θ2, and θ3, 

and the corresponding impedances are Z1, Z2, and Z3, 

respectively. According to Ref. [22], [23], the input impedance 

Zin of the tri-section SIR can be expressed as: 
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Fig. 1. Structure of the proposed LPF based on SISL platform. (a) 3D view, (b) 

cross view, (c) main circuit on Sub3, (d) details of the integrated DGS structure. 
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Fig. 2. (a) Original circuit of LPF loading ST-SIRs, and (b) geometry of λ/4 tri-

section SIR. 
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where K1=Z3/Z2, K2=Z2/Z1 represent impedance ratios.  

To simplify the analysis, θ1=θ2=θ3=θ of the tri-section SIR 

has been set. When it is resonant, the expression between θ, the 

resonance frequencies (f1, f2, f3) and the impedance ratios (K1, 

K2) can be derived as: 
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Fig. 3. (a) The low pass filtering response of symmetric tri-section SIRs, and 

(b) slow wave properties of ST-SIRs. 

According to formulas (1)-(4), it can be known the resonant 

frequencies can be flexibly controlled by adjusting the physical 

size of tri-section SIR. For ST-SIRs, the total electrical length 

θst = θt = 2(θ1+θ2+θ3) [22], which corresponds to six resonant 

frequencies fi (i = 1,2,3…6) as depicted in Fig. 3(a). And the 

ST-SIRs demonstrate a substantial low pass filtering response 

in Fig3(a). From Fig. 3(b), it's evident that compared to SISL 

transmission lines with the same length (d = 2mm), the ST-SIRs 

exhibit pronounced slow wave characteristics. It enables a more 

compact size for the device by adjusting the ST-SIRs' 

parameters. Moreover, some key parameters affecting the 

cutoff frequency fc of LPF are also investigated numerically. 

As illustrated in Fig. 4(a), it's apparent that when the 

parameter c2 is varied from 1.2mm to 0.6mm, the cut-off 

frequency fc shifts towards higher frequencies. Similarly, in Fig. 

4(b), as the parameter m3 changes from 1.1mm to 0.5mm, the 

cut-off frequency fc also moves towards higher frequencies. It 

demonstrates that the proposed ST-SIRs LPF has flexibly 

controllable cut-off frequency.  
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Fig. 4. Parameters affecting the cutoff frequency fc of ST-SIRs LPF. (a) 

simulated S21 variations versus c2 and (b) simulated S21 variations versus m3. 

B. Center-symmetric spurlines and DGS integrated on SISL 

To further enhance the frequency selectivity of the filter, a 

pair of center-symmetric L-type spurlines are incorporated into 

the proposed LPF structure in subsection A, as illustrated in Fig. 

5(a). The spurline resonator can be equivalent to a parallel RLC 

resonant circuit because of its bandgap property [24], as 

demonstrated in Fig. 5(b). The slotted gap capacitance is 

equivalent to the capacitance C of the resonator, while the slot 

line can be approximated as an inductance L of the resonator. 
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Moreover, the current vector J distribution of the LPF with 

loaded center-symmetric spurlines is shown in Fig. 5(c). It is 

evident that by employing two center-symmetric spurlines, 

named spurline  and spurline , two current paths rotating 

counterclockwise and clockwise, respectively, are introduced, 

which create multiple TZs close to the passband as shown in 

Fig. 6. 
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Fig. 5. (a) Geometry of center-symmetric spurlines, (b) equivalent circuit of 

spurlines, and (c) current vector J distributions of center-symmetric spurlines. 

Notably, the incorporation of center-symmetric spurlines 

results in a sharp roll-off performance, the roll-off rate (S21 from 

-3dB to -20dB) is improved nearly 10 times compared to the 

original structure in Fig. 2(a). It is worth noting that the lengths 

(l1 and l2) and the gap width (g1) of the spurlines are the key 

impact parameters. Consequently, the TZs outside the passband 

and the roll-off rate of the LPF can be flexibly tuned by 

changing the lengths l1 and l2 of the spurlines as investigated in 

Fig. 7. It can be seen from Fig. 7(a) that as the parameter l1 

varies from 0.1mm to 0.3mm, TZ1 gradually moves away from 

the passband side and towards higher frequencies, while TZ3 

moves towards lower frequencies, exhibiting a deeper out-of-

band rejection level. Similarly, as depicted in Fig. 7(b), when 

the parameter l2 varies from 0.5mm to 0.7mm, all the TZs 

gradually approach the passband side, accompanied by an 

increased out-of-band rejection. Consequently, the frequency 

selectivity of the LPF can be effectively improved by flexibly 

controlling the position of the TZs. 

The stopband performance is another important performance 

of LPF. It can be seen that the bandwidth of stopband is only 

ranging from 40.2 to 45.5 GHz. By cascading multiple DGS 

units to broaden the stopband of filters in microstrip circuits has 

been commonly used [5]. However, it will not only increase the 

size of the components, but also the radiation loss will increase 

greatly because the ground is destroyed, especially in mm-wave 

frequency. The substrate integrated defected ground structure 

(SIDGS) [25] has been reported recently as an effective method 

to reduce radiation loss due to DGS. Inspired by SIDGS and 

combining the advantages of high design freedom of multi-

layer and self-shielded characteristics of SISL, two pairs of 

DGS structures are symmetrically integrated on layer G2 and 

G10 of SISL, as shown in Fig. 1(a) and (d), respectively.  
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Fig. 7. Simulated S21 variations versus (a) parameter l1, and (b) parameter l2. 
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Fig. 8. (a) Structure of DGS shielded by metallic vias, (b) simulated results of 

radiation Rt, (c) E-field distribution diagram at 65GHz, and (d) simulated of S21 

about stopband when compared to original structure. 

It can be seen from Fig. 8(a) that DGS shielded by 

surrounding metallic vias and metal layer G1(G10) can confine 

the electric field lines between DGS and ground. And the 

metallic vias around DGS throughout Sub1 and Sub5 are used 

to prevent dissipation into the substrate. Since the radiation loss 

Rr can be calculated by the formula Rr = 1-|S11|2-|S21|2, which of 

SISL DGS (including the transition section from GCPW to 

SISL) is significantly reduced as shown in Fig. 8(b), especially 

the maximum Rr is reduced by 30% when compared to 

microstrip DGS. Furthermore, depending on the self-packaged 

characteristic of SISL, the radiation loss Rrdgs introduced only 

by the DGS tends to zero (excluding the GCPW-SISL transition 

section) as shown in Fig8(b), which confirms that integrating 

DGS on SISL can effectively reduce the radiation loss. It can 

be seen from the EM field distribution diagram at 65GHz in 

Fig.8(c) that four symmetrical "G-type" DGS cells integrated 

on the metal layer M2(M9) of SISL can effectively suppress the 

out-of-band stray resonance frequencies. Thus, the simulated 

stopband is finally extended to 60 GHz with S21 of -20 dB and 

further to 70 GHz with S21 of -16 dB when DGS structures are 

integrated on SISL as illustrated in Fig. 8(d). 

III. LPF MANUFACTURING, PACKAGING AND MEASUREMENT  

The prototype of LPF is manufactured based on standard 

PCB process as shown in Fig. 9(a) and (b), and the physical size 

of the cavity is 0.41λg×0.69λg×0.44λg, where λg represents the 

guided wavelength at 40GHz. The GCPW is employed as 

interface to carry out measurement based on our previous work 

on the GCPW to SISL transition structure [26]. Finally, the 

filter assembled with 2.92mm connectors, as illustrated in Fig. 

9(c), is measured by R&S®ZNA67 vector network analyzer. 

Sub5
Sub2

Sub3

Sub4Sub1

 

(a)                                             (b) 
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Fig. 9 Prototype of proposed LPF. (a) Whole structure, (b) details of LPF on 

Sub3, (c) assembly diagram. (a = 3.5mm, c1 = 1.69mm, c2 = 0.23mm, c3 = 

0.17mm, c4 = 0.13mm, m1 = 0.13mm, m2 = 0.29mm, m3 = 0.45mm, l1 = 0.72mm, 

l2 = 0.55mm, g1 = 0.1mm, l2 = 0.55mm, s1 = 0.4mm, s2 = 0.2mm, s3 = 0.6mm, s4 

= 0.15mm, s4 = 0.36mm). 
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It can be seen form Fig. 10 (a), the measured in-band IL of 

the LPF is no more than 1.85 dB from dc to 40 GHz and the 

measured in-band RL is better than 14.8 dB. The measured 

stopband with -17.2 dB rejection varies from 43GHz to 67GHz. 

For ultra-wideband filters applied in communication systems, a 

flat group delay is necessary because significant group delay 

varying with frequency have a dispersion effect on the signal 

[12]. As shown in Fig. 10(b), the measured group delay τg of 

the LPF in the passband is no more than 0.5 ns and relatively

Table Ⅰ 
COMPARISON WITH OTHER PREVIOUS WORKS 

Ref. Technology 
fc 

(GHz) 

IL 

(dB) 

RL 

(dB) 

Size 

(λg
3) 

R. C. 
OS 

(dB) 

SB 

(GHz) 
Substrates 

Self-

packaging 

[5] Microstrip#1 dc-1 <2 >12 0.00038 1.2* >30 1.6-6.5* PET No 

[6] Waveguide 10.3-12.6 <0.4 >15 5.09 
1.02

* 
>60 13.7-43* WR75 Yes 

[10] MCSICL#2 dc-30 <2.1 >10 0.42 
1.17

* 
>35 36-60* Rogers 5880 Yes 

[12] SISL dc-18 <1 >12 0.282 
1.07

* 
>30 19-26 Rogers 6002/6006 Yes 

[13] SISL 27.7-30.7 <1.6 >17 0.122 2 >80 35-65* FR4 Yes 

This 

work 
SISL dc-40 <1.85 >14.8 0.124 1.09 >17.2 43-67 FR4/ Rogers 5880 Yes 

Ref.: reference, fc: cutoff frequency, R. C.: Rectangular Coefficient = |BW-30dB/BW-3dB|, OS: out-of-band suppression, SB: upper stopband, #1: microstrip based on 

polyimide film substrate, #2: condition of low pass part, *: estimated value from figures. 
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Fig. 10 Simulated and measured results of the proposed LPF. (a) S parameters 

of S11 and S21, and (b) group delay τg. 

 

 

flat, which is in good agreement with the simulation ones. The 

inconsistencies between the simulated and measured results 

mainly caused by additional losses introduced by launch 

connectors, fabricating accuracy error and experimental 

assembly errors. 

Table Ⅰ shows the comparison of the proposed works with 

some typical works. Compared with the LPFs in Refs. [5], [6], 

[10], [12], the proposed LPF has the advantages of low loss and 

compact size. Compared to the bandpass filter in Ref. [13] 

which also excels in terms of IL and size, the proposed work 

has advantages in the aspect of operating bandwidth wider from 

dc-40 GHz and sharp roll-off skirt. 

IV. CONCLUSION 

In this brief, a dc-40 self-packaged compact GHz SISL LPF 

using ST-SIRs with low loss is proposed. The resonant 

characteristics of ST-SIRs are analyzed, and the cutoff 

frequency fc can be adjusted flexibly by changing the physical 

sizes of ST-SIRs. Moreover, controllable TZs are introduced 

near the passband side to improve the frequency selectivity of 

the LPF by loading center-symmetric spurlines. The top and 

bottom shielding layers of SISL are also utilized to enhance the 

stopband of the LPF by integrating DGS structures. It is worth 

noting that utilizing the multi-layer characteristics of SISL to 

achieve multifunctional complex circuits may be a feasible 

trend. The proposed LPF is fabricated and measured, which is 

suitable for mm-wave communication applications requiring 

large bandwidth and high integration. 
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