## 海水中における送受信アンテナ間の伝送効率

Transmission Efficiency between Transmitting and Receiving Antennas in Sea Water

陳 強<sup>1</sup>,藤井直道<sup>1</sup>,佐藤弘康<sup>1</sup>,石井 望<sup>2</sup>,高橋応明<sup>3</sup>,吉田 弘<sup>4</sup>

Qiang Chen<sup>1</sup>, Naomichi Fujii<sup>1</sup>, Hiroyasu Sato<sup>1</sup>, Nozomu Ishii<sup>2</sup>, Masaharu Takahashi<sup>3</sup>, Hiroshi Yoshida<sup>4</sup>

<sup>1</sup> 東北大学,<sup>2</sup> 新潟大学,<sup>3</sup> 千葉大学,<sup>4</sup> 海洋研究開発機構

<sup>1</sup>Tohoku University, <sup>2</sup>Niigata University, <sup>3</sup>Chiba University, <sup>4</sup>Japan Agency of Marine-Earth Science and Technology

1. まえがき 海水中の電波利用として,著者らは低 周波の電波を利用した海水中位置測距システムについて 検討を行っている [1]-[7].海水中の伝搬が海水の導電損 失が極めて大きいため,送受信アンテナ間の電波伝搬は, 遠方界による伝搬ではなく,超長波や長波などのような 低い周波数帯の導電電流によるアンテナ間の近傍界結合 である [1].そのため,高い導電損失媒質中の伝搬及び 小形アンテナのインピーダンスと整合するための整合回 路の導電損失を考慮して,海水中のアンテナの最適設計 を行う必要がある.本研究では,海水中における小形ダ イポール間及び小形ループアンテナ間の電力伝送効率の 視点から,アンテナの整合回路損失を考慮した海水中ア ンテナの設計法について検討する.

2. 数値シミュレーション

シミュレーションでは送受信アンテナ間のZパラメー タを計算し,そこからF行列を求めた. 伝送効率を計 算するには図1に示すように3つのF行列,送信側整 合回路 $F_1$ ,アンテナ間の伝送特性 $F_2$ ,受信側整合回路  $F_3$ を縦続接続し,さらに負荷 ( $Z_0$ =50 $\Omega$ )を接続した回 路を考える.

$$\begin{pmatrix} V_1 \\ I_1 \end{pmatrix} = F_1 F_2 F_3 \begin{pmatrix} 1 \\ 1/Z_0 \end{pmatrix} V_2 \tag{1}$$

*Z*<sub>0</sub> で消費される電力 *P*<sub>l</sub> を入射電力 *P*<sub>inc</sub> で割った値 を送受信アンテナの電力伝送効率 *τ* とする.

$$\tau = \frac{P_l}{P_{inc}} = \frac{\text{Re}(V_2^* I_2)}{\text{Re}(V_1^* I_1)} \left(1 - |\Gamma|^2\right)$$
(2)

ここで, Γは送信側整合回路の入力側の反射係数とする.



図1 送受信アンテナ間の伝送効率の計算モデル

ダイポールアンテナとループアンテナの解析モデル, 及び送受信アンテナの配置をぞれぞれ図2と図3に示す. 4.まとめ 本報告では海中アンテナに損失のある整 合回路を考慮したアンテナ間の電力伝送効率の計算をシ ミュレーションを行った.シース付ループアンテナの効 率が最も高い伝送効率が得られた.また,磁束が2つの ループアンテナを貫く配置により強い近傍界結合が生じ





図 3 送受信アンテナの配置

たことが確認された.また,アンテナの放射効率と電力 伝送効率とは必ずしも関連のないことが分かった.

## 参考文献

- [1] 陳 他, "電波の海中応用へのアプローチ," 信学技 報, AP2016-92, pp.25-28, Sep. 2016.
- [2] 石井 他, "疑似スケールモデルを用いた微小ダイ ポールによる海水中電磁界,"信学技報, AP2016-125, pp.11-16, Dec. 2016.
- [3] 高橋 他, "海中位置推定へのアプローチ," 信学技 報, AP2016-188, pp.59-62, Mar. 2017.
- [4] H. Sato, et al., "Dipole antenna with sheath-cover for seawater use," Proc. ISAP 2017, POS1, 1376, Phuket, Thailand, Oct. 2017.
- [5] 藤井 他, "海水中におけるアンテナ間の伝送効率," 信学技報, WPT2017-50, pp.33-37, Nov. 2017.
- [6] 久野 他, "電磁波を用いた海中位置推定システムの 検討,"2018 信学ソ大(通信), B-1-144, Mar. 2018.
- [7] 藤井 他, "海中無線通信用アンテナと伝搬モデルに 関する研究,"信学技報, AP2018-5, pp.23-28, Apr. 2018.