反射型フリースペース法による局所反射係数測定の高精度化

Accuracy Improvement of Local Reflection Coefficients Measurement by Reflective Free Space Method

松田 吏生

佐藤 弘康

Rio Matsuda

Hiroyasu Sato

Qiang Chen

東北大学院工学研究科

Graduate School of Engineering, Tohoku University

1. まえがき

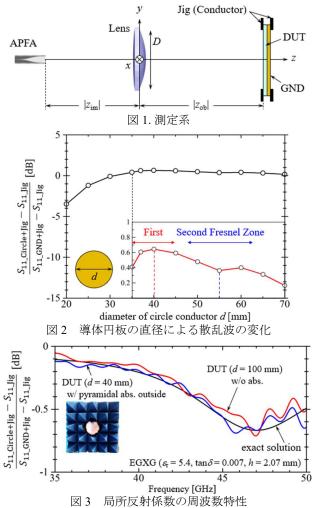
近年, 反射位相を電気的に制御して散乱ビーム方向を変 化可能な IRS (Intelligent Reflect Surface) が注目されている. 一般に、IRS を含むリフレクトアレーは無限周期構造解析 により得られた反射係数位相を利用して設計され、遠方界 における有限構造の RCS 測定が行われるが、遠方界条件を 満たす距離が必要であることに加え、構造は有限であり反 射係数を実験的に評価できない.一方,レンズにより電磁 界を集光して複素誘電率を測定するフリースペース法[!] で は、測定された S 行列が無限スラブ構造の厳密解と良く一 致することが知られている. 本報告では、IRS の局所反射 係数を測定することを目的とし、反射型フリースペース法 を用いた反射係数測定の高精度化について述べる.

2. 測定系

測定系を図 1 に示す. 誘電体レンズとして口径 D=100mm の高密度ポリエチレン製非球面レンズを使用し、レン ズとの空間相関が高い広帯域対せき形フェルミアンテナ (Anti-podal Fermi Antenna: APFA)[2] を使用した. 像面距離が $|z_{im}| = 150 \text{ mm}$ のときの集光距離は $|z_{ob}| = 200 \text{ mm}$ でありここ に地板付き誘電体サンプル(DUT+GND)と 100 mm の穴を有 する治具(Jig)を配置した.ベクトルネットワークアナライ ザ Keysight P5008A を用いて S11 を測定し、図2の縦軸に定 義した局所反射係数を測定し,以下の厳密解と比較した.

$$\begin{split} &\Gamma_{in} = \frac{\tanh(\gamma h) - \sqrt{\varepsilon_r}}{\tanh(\gamma h) + \sqrt{\varepsilon_r}} \\ &\gamma = \omega \sqrt{\frac{\varepsilon_r}{2}} \left[\sqrt{\left\{ \sqrt{1 + (\tan \delta)^2} - 1 \right\}} + j \sqrt{\left\{ \sqrt{1 + (\tan \delta)^2} + 1 \right\}} \right] \end{split}$$

 ε_r は比誘電率, $\tan \delta$ は誘電正接, h は誘電体厚さである.


3. 反射型フリースペース法の高精度化

集光面ではフレネルゾーンに応じて振幅および位相が変 化し、第2フレネルゾーンでは位相が大きく変化する、平 面波入射に近づけるためには DUT への照射は第1フレネル ゾーンの主ビームのみとすることが望ましい. 本報告では, 第 1 フレネルゾーンの外側を吸収体で覆うことで測定精度 の向上を図った. 集光距離|zob| = 200 mm に直径 d の円板導 体を配置したときの d に対する局所反射係数を図 2 に示す. ここで、局所反射係数とは Jig の散乱波成分の除去および 100 mm 角の地板で短絡校正を行った値である. 局所反射 係数は d=35 mm 付近で飽和したのちに小さく振動すること が確認された. この波形の落ち込みは第2フレネルゾーン からの散乱波が干渉したものと考え,直径 40 mm の穴開き 吸収体を治具に装着した. DUT として無アルカリガラス (Eagle XG, h = 2.07 mm) を使用したときの局所反射係数を図

3 に示す. 黒実線は厳密解, 赤実線は吸収体が無い場合, 青実線は直径 40 mm の吸収体で照射範囲を絞った場合の測 定結果である. 吸収体により第2フレネルゾーンからの散 乱成分を低減することで厳密解により近い結果が得られた.

4. まとめ

反射型フリースペース法による局所反射係数測定におい て、第2フレネルゾーンからの散乱波の低減により高精度 化を図った. 今後 IRS の反射係数測定を進める予定である.

謝辞 本研究開発は総務省の電波資源拡大のための研究開 発(JPJ000254)によって実施された.

参考文献[1] D. K. Ghodgaonkar et. al., "A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies," in IEEE Trans Instrum Meas, vol. 38, no. 3, pp. 789-793, June 1989.
[2] H.Sato, et. al., "High Gain Antipodal Fermi Antenna with Low Cross Polarization" in IEICE Trans. on Commun., vol. E94.B, Issue 8, pp. 2292-2297, 2011