Research on Improving Radiation Efficiency of Double-layer Patch Antenna

Department of Electrical and Communication Engineering Tohoku University

OGAO Peixin, CHEN Qiang, SAWAYA Kunio

BACKGROUND

Sawaya-Chen Lab.

We are stepping into a world of communication.

As one of the core components in a communication system, antennas are widely used in our daily life

Patch antenna: Antenna with metal patch suspended over a ground plane

Sawava-Chen Lab

Sawaya-Chen Lab.

4

Antenna efficiency = Radiation efficiency × $[1-(reflection coefficient)^2]$

• wider bandwidth

For double layer case:

x steep falling down in radiation efficiency η_{rad}

Generally, in order to get better antenna efficiency η_{ant} , we shall focus on two factors:

Radiation efficiency η_{rad}

& reflection coefficient Γ

For double layer patch antenna **radiation efficiency**

Sawava-Chen Lab

Worse performance on radiation efficiency

PROBLEM

Upper layer

6

→ Lower layer

Sawaya-Chen Lab.

How to optimize radiation efficiency η_{rad} ?

Dielectric substrate parameters:

- Permittivity (E)
- Dielectric loss tangent(δ)
- Permeability (μ, generally fixed as μ₀)

•... **So ...**

- What will happen when using different loss tangent $(\tan \delta)$ of the substrates?
- What about changing ε of the substrates?

NUMERICAL SIMULATION MODEL

Sawaya-Chen Lab.

Simulation model

Double-layer patch antenna with center frequency around 1 GHz*.

* Feeding based on FR4-epoxy as both upper and lower layer substrates

NUMERICAL SIMULATION MODEL

8

Sawaya-Chen Lab.

Two materials as substrates:

FR4-epoxy:

Relative permittivity $\varepsilon_r = 4.4$ loss tan $\delta = 0.02$ **Teflon** :

Relative permittivity $\varepsilon_r = 2$ loss tan $\delta = 0.001$

	Upper layer	Lower layer	δ ranging
Case 1	FR4-epoxy	FR4-epoxy	e-1~e-5
Case 2	FR4-epoxy	Teflon	e-1~e-5
Case 3	Teflon	FR4-epoxy	e-1~e-5
Case 4	Teflon	Teflon	e-1~e-5

OBSERVATION AND CONCLUSIONS

9

- Radiation efficiency η_{rad} of four cases look similar

OBSERVATION AND CONCLUSIONS

11

Sawaya-Chen Lab.

Similar observations also happen in other model teams.

OBSERVATION AND CONCLUSIONS

12

Sawaya-Chen Lab.

14

Sawaya-Chen Lab.

• The relation between the loss tand and radiation efficiency η_{rad} is that when tand increases, η_{rad} decreases.

- The rediation efficiency seems more sensitive towards the changing of lower layer substrate's loss tangent.
- when designing a double layer patch antenna, try to decrease the loss tan δ , especially of lower layer substrate, within price requirement.

Future work

- Reason of radiation efficiency falling down at some frequency ranges is not yet of certainty, which needs more research on it.
- Reducing reflection coefficient at frequency of high radiation efficiency.

THANK YOU FOR LISTENING !

ANNEX: ELECTRIC FIELD DISTRIBUTION

16

Sawaya-Chen Lab.

FR4(upper)/FR4(lower) model

ANNEX: ELECTRIC FIELD DISTRIBUTION

18

Sawaya-Chen Lab.

Teflon(upper)/FR4(lower) model

ANNEX: ELECTRIC FIELD DISTRIBUTION

19

Sawaya-Chen Lab.

Teflon(upper)/Teflon(lower) model

